Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38390727

RESUMO

The tympanic membrane (i.e. eardrum) sits at the interface between the middle and external ear. The tympanic membrane is composed of three layers: an outer ectoderm-derived layer, a middle neural crest-derived fibroblast layer with contribution from the mesoderm-derived vasculature, and an inner endoderm-derived mucosal layer. These layers form a thin sandwich that is often perforated following trauma, pressure changes or middle ear inflammation. During healing, cells need to bridge the perforation in the absence of an initial scaffold. Here, we assessed the contribution, timing and interaction of the different layers during membrane repair by using markers and reporter mice. We showed that the ectodermal layer is retracted after perforation, before proliferating away from the wound edge, with keratin 5 basal cells migrating over the hole to bridge the gap. The mesenchymal and mucosal layers then used this scaffold to complete the repair, followed by advancement of the vasculature. Finally, differentiation of the epithelium led to formation of a scab. Our results reveal the dynamics and interconnections between the embryonic germ layers during repair and highlight how defects might occur.


Assuntos
Perfuração da Membrana Timpânica , Membrana Timpânica , Camundongos , Animais , Membrana Timpânica/lesões , Epitélio , Mucosa , Diferenciação Celular
2.
Biology (Basel) ; 12(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36979085

RESUMO

A mesiodens is a supernumerary tooth located in the midline of the premaxilla. To investigate the genetic cause of mesiodens, clinical and radiographic examination were performed on 23 family members of a two-generation Hmong family. Whole exome sequencing (WES) or Sanger sequencing were performed in 22 family members and two unrelated Thai patients with mesiodens. WES in the Hmong family revealed a missense mutation (c.1807G>A;p.Glu603Lys) in PTPN23 in seven affected members and six unaffected members. The mode of inheritance was autosomal dominance with incomplete penetrance (53.84%). Two additional mutations in PTPN23, c.2248C>G;p.Pro750Ala and c.3298C>T;p.Arg1100Cys were identified in two unrelated patients with mesiodens. PTPN23 is a regulator of endosomal trafficking functioning to move activated membrane receptors, such as EGFR, from the endosomal sorting complex towards the ESCRT-III complex for multivesicular body biogenesis, lysosomal degradation, and subsequent downregulation of receptor signaling. Immunohistochemical study and RNAscope on developing mouse embryos showed broad expression of PTPN23 in oral tissues, while immunofluorescence showed that EGFR was specifically concentrated in the midline epithelium. Importantly, PTPN23 mutant protein was shown to have reduced phosphatase activity. In conclusion, mesiodens were associated with genetic variants in PTPN23, suggesting that mesiodens may form due to defects in endosomal trafficking, leading to disrupted midline signaling.

3.
Front Genet ; 13: 933416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299576

RESUMO

High incidence of chronic otitis media is associated with human craniofacial syndromes, suggesting that defects in the formation of the middle ear and associated structures can have a knock-on effect on the susceptibility to middle ear inflammation. Patients with branchio-oto-renal (BOR) syndrome have several defects in the ear leading to both sensorineural and conductive hearing loss, including otitis media. 40% of BOR syndrome cases are due to Eya1 haploinsufficiency, with mouse models affecting Eya1, mimicking many of the defects found in patients. Here, we characterize the onset, consequences, and underlying causes of chronic otitis media in Eya1 heterozygous mice. Cavitation defects were evident in these mice from postnatal day (P)11 onwards, with mesenchyme around the promontory and attic regions of the middle ear space. This mesenchyme was still prominent in adult Eya1 heterozygous mice, while the wild-type littermates had fully aerated ears from P14 onwards. MicroCT analysis highlighted a significantly smaller bulla, confirming the link between bulla size defects and the ability of the mesenchyme to retract successfully. Otitis media was observed from P14, often presenting unilaterally, resulting in hyperplasia of the middle ear mucosa, expansion of secretory cells, defects in the motile cilia, and changes in basal epithelial cell markers. A high incidence of otitis media was identified in older mice but only associated with ears with retained mesenchyme. To understand the impact of the environment, the mouse line was rederived onto a super-clean environment. Cavitation defects were still evident at early stages, but these generally resolved over time, and importantly, no signs of otitis media were observed at 6 weeks. In conclusion, we show that a small bulla size is closely linked to defects in cavitation and the presence of retained mesenchyme. A delay in retraction of the mesenchyme predates the onset of otitis media, making the ears susceptible to its development. Early exposure to OM appears to exacerbate the cavitation defect, with mesenchyme evident in the middle ear throughout the animal's life. This highlights that permanent damage to the middle ear can arise as a consequence of the early onset of OM.

4.
Front Cell Dev Biol ; 8: 609643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363172

RESUMO

The pinna (or auricle) is part of the external ear, acting to capture and funnel sound toward the middle ear. The pinna is defective in a number of craniofacial syndromes, including Lacrimo-auriculo-dento-digital (LADD) syndrome, which is caused by mutations in FGF10 or its receptor FGFR2b. Here we study pinna defects in the Fgf10 knockout mouse. We show that Fgf10 is expressed in both the muscles and forming cartilage of the developing external ear, with loss of signaling leading to a failure in the normal extension of the pinna over the ear canal. Conditional knockout of Fgf10 in the neural crest fails to recapitulate this phenotype, suggesting that the defect is due to loss of Fgf10 from the muscles, or that this source of Fgf10 can compensate for loss in the forming cartilage. The defect in the Fgf10 null mouse is driven by a reduction in proliferation, rather than an increase in cell death, which can be partially phenocopied by inhibiting cell proliferation in explant culture. Overall, we highlight the mechanisms that could lead to the phenotype observed in LADD syndrome patients and potentially explain the formation of similar low-set and cup shaped ears observed in other syndromes.

5.
Development ; 147(23)2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33093151

RESUMO

Defects in ear canal development can cause severe hearing loss as sound waves fail to reach the middle ear. Here, we reveal new mechanisms that control human canal development and highlight for the first time the complex system of canal closure and reopening. These processes can be perturbed in mutant mice and in explant culture, mimicking the defects associated with canal atresia. The more superficial part of the canal forms from an open primary canal that closes and then reopens. In contrast, the deeper part of the canal forms from an extending solid meatal plate that opens later. Closure and fusion of the primary canal was linked to loss of periderm, with failure in periderm formation in Grhl3 mutant mice associated with premature closure of the canal. Conversely, inhibition of cell death in the periderm resulted in an arrest of closure. Once closed, re-opening of the canal occurred in a wave, triggered by terminal differentiation of the epithelium. Understanding these complex processes involved in canal development sheds light on the underlying causes of canal atresia.


Assuntos
Proteínas de Ligação a DNA/genética , Meato Acústico Externo/crescimento & desenvolvimento , Encefalite/genética , Perda Auditiva/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Meato Acústico Externo/anormalidades , Meato Acústico Externo/metabolismo , Meato Acústico Externo/patologia , Encefalite/patologia , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Perda Auditiva/patologia , Humanos , Camundongos , Proteínas Mutantes/genética
6.
Dev Dyn ; 249(2): 199-208, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31587402

RESUMO

BACKGROUND: The egg tooth is a vital structure allowing hatchlings to escape from the egg. In squamates (snakes and lizards), the egg tooth is a real tooth that develops within the oral cavity at the top of the upper jaw. Most squamates have a single large midline egg tooth at hatching, but a few families, such as Gekkonidae, have two egg teeth. In snakes the egg tooth is significantly larger than the rest of the dentition and is one of the first teeth to develop. RESULTS: We follow the development of the egg tooth in four snake species and show that the single egg tooth is formed by two tooth germs. These two tooth germs are united at the midline and grow together to produce a single tooth. In culture, this merging can be perturbed to give rise to separate smaller teeth, confirming the potential of the developing egg tooth to form two teeth. CONCLUSIONS: Our data agrees with previous hypotheses that during evolution one potential mechanism to generate a large tooth is through congrescence of multiple tooth germs and suggests that the ancestors of snakes could have had two egg teeth.


Assuntos
Serpentes/embriologia , Germe de Dente/embriologia , Animais , Dentição , Dente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...